Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Infect Chemother ; 55(2): 214-225, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2297872

ABSTRACT

BACKGROUND: We aimed to identify the genes of 35 pathogens, including viruses, bacteria, and protozoa that cause waterborne infectious diseases, and to assess the feasibility of a wastewater-based surveillance system. MATERIALS AND METHODS: Wastewater was aseptically sampled once a month from 2 sites. A total of 1 L of wastewater from each site underwent 0.2 µm filtration to generate the sample A. Subsequently, 200 ul of the filtered water was ultra-filtered and concentrated to generate the sample B, which was mixed with sample A in a 1:1 ratio. We performed a Filmarray® Gastrointestinal (GI) panel (BioFire Diagnnostics', Salt Lake City, UT, USA) test to simultaneously detect 13 enterobacteria, 5 enterovirus, and 4 protozoa. RNA was extracted to assess 18 types of viruses. RESULTS: Severe acute respiratory syndrome coronavirus 2 adenovirus, bocavirus, and rhinovirus was detected at both site. Norovirus GI/GII was continuously detected at both sites. Moreover, adenovirus, group A rotaviruses, and hepatitis A virus were frequently detected; however, hepatitis E virus was absent at either site. Campylobacter, enteroaggregative Escherichia coli, enterotoxigenic E. coli, Shiga toxin-producing E. coli, and Clostridioides difficile toxin A/B were detected at both sites. Giardia lamblia was also detected in both sites. CONCLUSION: We analyze multiple infectious disease pathogens under sample surveillance with incidence. Further in-depth studies on wastewater-based surveillance will be feasible and important.

2.
Ann Agric Environ Med ; 29(4): 595-602, 2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2205477

ABSTRACT

The topic of SARS-CoV-2 coronavirus infections in children is still complex and not fully understood. Acute meningoencephalitis (ME) was not considered a common presentation of COVID-19 in paediatrics, however, over time, several paediatric patients with ME associated with SARS-CoV-2 coronavirus infection have been described. The case report describes the clinical case of a newborn admitted to the Neonatal Intensive Care Unit (NICU) on 11th day of life due to severe SARS-CoV-2 coronavirus infection, who experienced multiple seizure episodes. The patient was diagnosed with ME and hydrocephalus. In the absence of clinical improvement, despite the use of standard treatment, acetazolamide (ACZ) was used, achieving complete relief of seizures and gradual regression of hydrocephalus. This means that ACZ can be considered as an add-on therapy to standard treatment in cases of ME and postinflammatory hydrocephalus in the course of COVID-19 disease.


Subject(s)
COVID-19 , Hydrocephalus , Meningoencephalitis , Infant, Newborn , Humans , Child , COVID-19/complications , Acetazolamide/therapeutic use , SARS-CoV-2 , Hydrocephalus/drug therapy , Hydrocephalus/etiology , Meningoencephalitis/drug therapy , Meningoencephalitis/etiology
3.
Int J Hyg Environ Health ; 248: 114106, 2023 03.
Article in English | MEDLINE | ID: covidwho-2165379

ABSTRACT

INTRODUCTION: Inanimate surfaces within hospitals can be a source of transmission for highly resistant microorganisms (HRMO). While many hospitals are transitioning to single-occupancy rooms, the effect of single-occupancy rooms on environmental contamination is still unknown. We aimed to determine differences in environmental contamination with HRMO between an old hospital building with mainly multiple-occupancy rooms and a new hospital building with 100% single-occupancy rooms, and the environmental contamination in the new hospital building during three years after relocating. METHODS: Environmental samples were taken twice in the old hospital, and fifteen times over a three-year period in the new hospital. Replicate Organism Direct Agar Contact-plates (RODACs) were used to determine colony forming units (CFU). Cotton swabs premoistened with PBS were used to determine presence of methicillin-resistant Staphylococcus aureus, carbapenemase-producing Pseudomonas aeruginosa, highly resistant Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and vancomycin-resistant Enterococcus faecium. All identified isolates were subjected to whole genome sequencing (WGS) using Illumina technology. RESULTS: In total, 4993 hospital sites were sampled, 724 in the old and 4269 in the new hospital. CFU counts fluctuated during the follow-up period in the new hospital building, with lower CFU counts observed two- and three years after relocating, which was during the COVID-19 pandemic. The CFU counts in the new building were equal to or surpassed the CFU counts in the old hospital building. In the old hospital building, 24 (3.3%) sample sites were positive for 49 HRMO isolates, compared to five (0.1%) sample sites for seven HRMO isolates in the new building (P < 0.001). In the old hospital, 89.8% of HRMO were identified from the sink plug. In the new hospital, 71.4% of HRMO were identified from the shower drain, and no HRMO were found in sinks. DISCUSSION: Our results indicate that relocating to a new hospital building with 100% single-occupancy rooms significantly decreases HRMO in the environment. Given that environmental contamination is an important source for healthcare associated infections, this finding should be taken into account when considering hospital designs for renovations or the construction of hospitals.


Subject(s)
COVID-19 , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Humans , Follow-Up Studies , Pandemics , Hospitals , Cross Infection/epidemiology
4.
Aerobiologia (Bologna) ; 38(3): 391-412, 2022.
Article in English | MEDLINE | ID: covidwho-2007173

ABSTRACT

The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09754-7.

6.
Microbiology Australia ; 42(4):150, 2021.
Article in English | EMBASE | ID: covidwho-1768979
7.
Aerobiologia (Bologna) ; 37(3): 575-583, 2021.
Article in English | MEDLINE | ID: covidwho-1220488

ABSTRACT

To clarify the characteristics and distribution of hospital environmental microbiome associated with confirmed COVID-19 patients. Environmental samples with varying degrees of contamination which were associated with confirmed COVID-19 patients were collected, including 13 aerosol samples collected near eight patients in different wards, five swabs from one patient's skin and his personal belongings, and two swabs from the surface of positive pressure respiratory protective hood and the face shield from a physician who had close contact with one patient. Metagenomic next-generation sequencing (mNGS) was used to analyze the composition of the microbiome. One of the aerosol samples (near patient 4) was detected positive for COVID-19, and others were all negative. The environmental samples collected in different wards possessed protean compositions and community structures, the dominant genera including Pseudomonas, Corynebacterium, Neisseria, Staphylococcus, Acinetobacter, and Cutibacterium. Top 10 of genera accounted for more than 76.72%. Genera abundance and proportion of human microbes and pathogens radiated outward from the patient, while the percentage of environmental microbes increased. The abundance of the pathogenic microorganism of medical supplies is significantly higher than other surface samples. The microbial compositions of the aerosol collected samples nearby the patients were mostly similar to those from the surfaces of the patient's skin and personal belongings, but the abundance varied greatly. The positive rate of COVID-19 RNA detected from aerosol around patients in general wards was quite low. The ward environment was predominantly inhabited by species closely related to admitted patients. The spread of hospital microorganisms via aerosol was influenced by the patients' activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-021-09708-5.

8.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066817

ABSTRACT

Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and nearly complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the United States or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside California, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sewage/virology , Base Sequence , COVID-19/epidemiology , California/epidemiology , Environmental Microbiology , Genome, Viral , Genotype , Humans , Metagenome , Metagenomics , Polymorphism, Single Nucleotide , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Transcriptome
9.
Cell Death Discov ; 6(1): 96, 2020.
Article in English | MEDLINE | ID: covidwho-834872

ABSTRACT

The hand of molecular mimicry in shaping SARS-CoV-2 evolution and immune evasion remains to be deciphered. Here, we report 33 distinct 8-mer/9-mer peptides that are identical between SARS-CoV-2 and the human reference proteome. We benchmark this observation against other viral-human 8-mer/9-mer peptide identity, which suggests generally similar extents of molecular mimicry for SARS-CoV-2 and many other human viruses. Interestingly, 20 novel human peptides mimicked by SARS-CoV-2 have not been observed in any previous coronavirus strains (HCoV, SARS-CoV, and MERS). Furthermore, four of the human 8-mer/9-mer peptides mimicked by SARS-CoV-2 map onto HLA-B*40:01, HLA-B*40:02, and HLA-B*35:01 binding peptides from human PAM, ANXA7, PGD, and ALOX5AP proteins. This mimicry of multiple human proteins by SARS-CoV-2 is made salient by single-cell RNA-seq (scRNA-seq) analysis that shows the targeted genes significantly expressed in human lungs and arteries; tissues implicated in COVID-19 pathogenesis. Finally, HLA-A*03 restricted 8-mer peptides are found to be shared broadly by human and coronaviridae helicases in functional hotspots, with potential implications for nucleic acid unwinding upon initial infection. This study presents the first scan of human peptide mimicry by SARS-CoV-2, and via its benchmarking against human-viral mimicry more broadly, presents a computational framework for follow-up studies to assay how evolutionary tinkering may relate to zoonosis and herd immunity.

10.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: covidwho-767717

ABSTRACT

The infection of health care workers during the 2013 to 2016 Ebola outbreak raised concerns about fomite transmission. In the wake of the coronavirus disease 2019 (COVID-19) pandemic, investigations are ongoing to determine the role of fomites in coronavirus transmission as well. The bacteriophage phi 6 has a phospholipid envelope and is commonly used in environmental studies as a surrogate for human enveloped viruses. The persistence of phi 6 was evaluated as a surrogate for Ebola virus (EBOV) and coronaviruses on porous and nonporous hospital surfaces. Phi 6 was suspended in a body fluid simulant and inoculated onto 1-cm2 coupons of steel, plastic, and two fabric curtain types. The coupons were placed at two controlled absolute humidity (AH) levels: a low AH of 3.0 g/m3 and a high AH of 14.4 g/m3 Phi 6 declined at a lower rate on all materials under low-AH conditions, with a decay rate of 0.06-log10 PFU/day to 0.11-log10 PFU/day, than under the higher AH conditions, with a decay rate of 0.65-log10 PFU/h to 1.42-log10 PFU/day. There was a significant difference in decay rates between porous and nonporous surfaces at both low AH (P < 0.0001) and high AH (P < 0.0001). Under these laboratory-simulated conditions, phi 6 was found to be a conservative surrogate for EBOV under low-AH conditions in that it persisted longer than Ebola virus in similar AH conditions. Additionally, some coronaviruses persist longer than phi 6 under similar conditions; therefore, phi 6 may not be a suitable surrogate for coronaviruses.IMPORTANCE Understanding the persistence of enveloped viruses helps inform infection control practices and procedures in health care facilities and community settings. These data convey to public health investigators that enveloped viruses can persist and remain infective on surfaces, thus demonstrating a potential risk for transmission. Under these laboratory-simulated Western indoor hospital conditions, we assessed the suitability of phi 6 as a surrogate for environmental persistence research related to enveloped viruses, including EBOV and coronaviruses.


Subject(s)
Bacteriophage phi 6/isolation & purification , Bacteriophage phi 6/physiology , Coronavirus/physiology , Ebolavirus/physiology , Environmental Microbiology , Fomites/virology , Virus Inactivation , Betacoronavirus/physiology , COVID-19 , Coronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Hospitals , Humans , Humidity , Pandemics , Pneumonia, Viral/transmission , Porosity , SARS-CoV-2 , Temperature
11.
Pesqui. bras. odontopediatria clín. integr ; 20: e0071, 2020. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-725958

ABSTRACT

Abstract Objective: To evaluate the best strategy for pacifier disinfection methods. Material and Methods: The literature search was conducted on MEDLINE/PubMed, Scielo, Lilacs, Web of Science, and Scopus databases to find all relevant articles published over the past 20 years, based on PRISMA guidelines. Two reviewers extracted data independently by using a standardized form. The following factors were recorded: country of study, type of study, pacifier material, sample number, microorganisms analyzed, decontamination methods used, method accessibility and results found. Results: A total of 121 articles were obtained from all databases. The selected documents underwent a final screening, resulting in 8 articles. The method of disinfection analyzed by the literature were: 3.5% neutral detergent, apple cider vinegar 70% spray, boiling water during 15 minutes, sodium hypochlorite 2.5, hydrogen peroxide 70% spray, chlorhexidine 0.12%, Brushtox®, sterile water and microwave. Conclusion: Because of the broad methods for pacifier disinfection and different levels of accessibility to disinfectant agents, the pacifier consensus for decontamination remains unclear. Although the disinfection methods are diverse, the methods suggested to its disinfection were identified and described in this article.


Subject(s)
Sucking Behavior , Decontamination , Coronavirus , Pacifiers/microbiology , Environmental Microbiology , Brazil , Disinfection , Data Interpretation, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL